Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 718
Filter
2.
BMC Plant Biol ; 24(1): 220, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532321

ABSTRACT

BACKGROUND: Riboflavin is the precursor of several cofactors essential for normal physical and cognitive development, but only plants and some microorganisms can produce it. Humans thus rely on their dietary intake, which at a global level is mainly constituted by cereals (> 50%). Understanding the riboflavin biosynthesis players is key for advancing our knowledge on this essential pathway and can hold promise for biofortification strategies in major crop species. In some bacteria and in Arabidopsis, it is known that RibA1 is a bifunctional protein with distinct GTP cyclohydrolase II (GTPCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) domains. Arabidopsis harbors three RibA isoforms, but only one retained its bifunctionality. In rice, however, the identification and characterization of RibA has not yet been described. RESULTS: Through mathematical kinetic modeling, we identified RibA as the rate-limiting step of riboflavin pathway and by bioinformatic analysis we confirmed that rice RibA proteins carry both domains, DHBPS and GTPCHII. Phylogenetic analysis revealed that OsRibA isoforms 1 and 2 are similar to Arabidopsis bifunctional RibA1. Heterologous expression of OsRibA1 completely restored the growth of the rib3∆ yeast mutant, lacking DHBPS expression, while causing a 60% growth improvement of the rib1∆ mutant, lacking GTPCHII activity. Regarding OsRibA2, its heterologous expression fully complemented GTPCHII activity, and improved rib3∆ growth by 30%. In vitro activity assays confirmed that both OsRibA1 and OsRibA2 proteins carry GTPCHII/DHBPS activities, but that OsRibA1 has higher DHBPS activity. The overexpression of OsRibA1 in rice callus resulted in a 28% increase in riboflavin content. CONCLUSIONS: Our study elucidates the critical role of RibA in rice riboflavin biosynthesis pathway, establishing it as the rate-limiting step in the pathway. By identifying and characterizing OsRibA1 and OsRibA2, showcasing their GTPCHII and DHBPS activities, we have advanced the understanding of riboflavin biosynthesis in this staple crop. We further demonstrated that OsRibA1 overexpression in rice callus increases its riboflavin content, providing supporting information for bioengineering efforts.


Subject(s)
Arabidopsis , Oryza , Humans , Riboflavin/genetics , Riboflavin/metabolism , Amino Acid Sequence , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Oryza/metabolism , Arabidopsis/metabolism , Phylogeny , Protein Isoforms/metabolism
3.
Pediatr Neurol ; 154: 66-69, 2024 May.
Article in English | MEDLINE | ID: mdl-38547557

ABSTRACT

BACKGROUND: GTP-cyclohydrolase 1-deficient dopa-responsive dystonia (GTPCH1-deficient DRD) typically presents in childhood with dystonic posture of the lower extremities, gait impairment, and a significant response to levodopa. We performed three-dimensional gait analysis (3DGA) to quantitatively assess the gait characteristics and changes associated with levodopa treatment in patients with GTPCH1-deficient DRD. METHODS: Three levodopa-treated patients with GTPCH1-deficient DRD underwent 3DGA twice, longitudinally. Changes were evaluated for cadence; gait speed; step length; gait deviation index; kinematic data of the pelvis, hip, knee, and ankle joints; and foot progression angle. RESULTS: Levodopa treatment increased the cadence and gait speed in one of three patients and increased the gait deviation index in two of three patients. The kinematic data for each joint exhibited different characteristics, with some improvement observed in each of the three patients. There was consistent marked improvement in the abnormal foot progression angle; one patient had excessive external rotation of one foot, another had excessive bilateral internal rotation, and the other had excessive internal rotation of one foot and excessive external rotation of the opposite foot, all of which improved. CONCLUSION: The 3DGA findings demonstrate that the gait pathology and recovery process in GTPCH1-deficient DRD vary from case to case. Changes in the foot progression angle and gait deviation index can enable the effects of treatment to be more easily evaluated.


Subject(s)
Dystonic Disorders , Levodopa , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , GTP Cyclohydrolase/genetics , Gait Analysis , Dystonic Disorders/drug therapy , Dystonic Disorders/genetics , Biomarkers
4.
Eur J Pharmacol ; 967: 176379, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38342361

ABSTRACT

Dopa and tetrahydrobiopterin (BH4) supplementation are recommended therapies for the dopa-responsive dystonia caused by GTP cyclohydrolase 1 (GCH1, also known as GTPCH) deficits. However, the efficacy and mechanisms of these therapies have not been intensively studied yet. In this study, we tested the efficacy of dopa and BH4 therapies by using a novel GTPCH deficiency mouse model, Gch1KI/KI, which manifested infancy-onset motor deficits and growth retardation similar to the patients. First, dopa supplementation supported Gch1KI/KI mouse survival to adulthood, but residual motor deficits and dwarfism remained. Interestingly, RNAseq analysis indicated that while the genes participating in BH4 biosynthesis and regeneration were significantly increased in the liver, no significant changes were observed in the brain. Second, BH4 supplementation alone restored the growth of Gch1KI/KI pups only in early postnatal developmental stage. High doses of BH4 supplementation indeed restored the total brain BH4 levels, but brain dopamine deficiency remained. While total brain TH levels were relatively increased in the BH4 treated Gch1KI/KI mice, the TH in the striatum were still almost undetectable, suggesting differential BH4 requirements among brain regions. Last, the growth of Gch1KI/KI mice under combined therapy outperformed dopa or BH4 therapy alone. Notably, dopamine was abnormally high in more than half, but not all, of the treated Gch1KI/KI mice, suggesting the existence of variable synergetic effects of dopa and BH4 supplementation. Our results provide not only experimental evidence but also novel mechanistic insights into the efficacy and limitations of dopa and BH4 therapies for GTPCH deficiency.


Subject(s)
Biopterins/analogs & derivatives , Dihydroxyphenylalanine , Dopamine , Phenylketonurias , Humans , Mice , Animals , GTP Cyclohydrolase/genetics , Disease Models, Animal
5.
Vascul Pharmacol ; 150: 107168, 2023 06.
Article in English | MEDLINE | ID: mdl-36966985

ABSTRACT

BACKGROUND AND PURPOSE: Pregnancy-associated vascular remodelling is essential for both maternal and fetal health. We have previously shown that maternal endothelial cell tetrahydrobiopterin (BH4) deficiency causes poor pregnancy outcomes. Here, we investigated the role and mechanisms of endothelial cell-mediated vasorelaxation function in these outcomes. EXPERIMENTAL APPROACH: The vascular reactivity of mouse aortas and uterine arteries from non-pregnant and pregnant endothelial cell-specific BH4 deficient mice (Gch1fl/flTie2cre mice) was assessed by wire myography. Systolic blood pressure was assessed by tail cuff plethysmography. KEY RESULTS: In late pregnancy, systolic blood pressure was significantly higher (∼24 mmHg) in Gch1fl/flTie2cre mice compared with wild-type littermates. This was accompanied by enhanced vasoconstriction and reduced endothelial-dependent vasodilation in both aorta and uterine arteries from pregnant Gch1fl/flTie2cre mice. In uterine arteries loss of eNOS-derived vasodilators was partially compensated by upregulation of intermediate and large-conductance Ca2+-activated K+ channels. In rescue experiments, oral BH4 supplementation alone did not rescue vascular dysfunction and pregnancy-induced hypertension in Gch1fl/flTie2cre mice. However, combination with the fully reduced folate, 5-methyltetrahydrofolate (5-MTHF), restored endothelial cell vasodilator function and blood pressure. CONCLUSIONS AND IMPLICATIONS: We identify a critical requirement for maternal endothelial cell Gch1/BH4 biosynthesis in endothelial cell vasodilator function in pregnancy. Targeting vascular Gch1 and BH4 biosynthesis with reduced folates may provide a novel therapeutic target for the prevention and treatment of pregnancy-related hypertension.


Subject(s)
Hypertension, Pregnancy-Induced , Vasodilator Agents , Humans , Female , Mice , Animals , Pregnancy , Vasodilator Agents/pharmacology , Blood Pressure , Vasodilation/physiology , Biopterins , Endothelial Cells , Endothelium, Vascular , Nitric Oxide Synthase Type III , Nitric Oxide , GTP Cyclohydrolase/genetics
7.
Am J Physiol Heart Circ Physiol ; 324(4): H430-H442, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36735402

ABSTRACT

The cofactor tetrahydrobiopterin (BH4) is a critical regulator of nitric oxide synthase (NOS) function and redox signaling, with reduced BH4 implicated in multiple cardiovascular disease states. In the myocardium, augmentation of BH4 levels can impact on cardiomyocyte function, preventing hypertrophy and heart failure. However, the specific role of endothelial cell BH4 biosynthesis in the coronary circulation and its role in cardiac function and the response to ischemia has yet to be elucidated. Endothelial cell-specific Gch1 knockout mice were generated by crossing Gch1fl/fl with Tie2cre mice, generating Gch1fl/flTie2cre mice and littermate controls. GTP cyclohydrolase protein and BH4 levels were reduced in heart tissues from Gch1fl/flTie2cre mice, localized to endothelial cells, with normal cardiomyocyte BH4. Deficiency in coronary endothelial cell BH4 led to NOS uncoupling, decreased NO bioactivity, and increased superoxide and hydrogen peroxide productions in the hearts of Gch1fl/flTie2cre mice. Under physiological conditions, loss of endothelial cell-specific BH4 led to mild cardiac hypertrophy in Gch1fl/flTie2cre hearts. Endothelial cell BH4 loss was also associated with increased neuronal NOS protein, loss of endothelial NOS protein, and increased phospholamban phosphorylation at serine-17 in cardiomyocytes. Loss of cardiac endothelial cell BH4 led to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia-reperfusion injury. Taken together, these studies reveal a specific role for endothelial cell Gch1/BH4 biosynthesis in cardiac function and the response to cardiac ischemia-reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction and ischemia-reperfusion injury.NEW & NOTEWORTHY We demonstrate a critical role for endothelial cell Gch1/BH4 biosynthesis in coronary vascular function and cardiac function. Loss of cardiac endothelial cell BH4 leads to coronary vascular dysfunction, reduced functional recovery, and increased myocardial infarct size following ischemia/reperfusion injury. Targeting endothelial cell Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of cardiac dysfunction, ischemia injury, and heart failure.


Subject(s)
Heart Failure , Myocardial Infarction , Myocardial Reperfusion Injury , Mice , Animals , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Endothelial Cells/metabolism , Myocardium/metabolism , Biopterins/metabolism , Myocytes, Cardiac/metabolism , Mice, Knockout , Myocardial Infarction/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Heart Failure/metabolism , Nitric Oxide Synthase Type III/metabolism , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Nitric Oxide/metabolism
8.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674724

ABSTRACT

The GTP cyclohydrolase 1 enzyme (GTPCH1) is the rate-limiting enzyme of the tetrahydrobiopterin (BH4) biosynthetic pathway. Physiologically, BH4 plays a crucial role as an essential cofactor for the production of catecholamine neurotransmitters, including epinephrine, norepinephrine and dopamine, as well as the gaseous signaling molecule, nitric oxide. Pathological levels of the cofactor have been reported in a number of disease states, such as inflammatory conditions, neuropathic pain and cancer. Targeting the GTPCH1 enzyme has great potential in the management of a number of disease pathologies associated with dysregulated BH4 physiology. This study is an in silico investigation of the human GTPCH1 enzyme using virtual screening and molecular dynamic simulation to identify molecules that can be repurposed to therapeutically target the enzyme. A three-tier molecular docking protocol was employed in the virtual screening of a comprehensive library of over 7000 approved medications and nutraceuticals in order to identify hit compounds capable of binding to the GTPCH1 binding pocket with the highest affinity. Hit compounds were further verified by molecular dynamic simulation studies to provide a detailed insight regarding the stability and nature of the binding interaction. In this study, we identify a number of drugs and natural compounds with recognized anti-inflammatory, analgesic and cytotoxic effects, including the aminosalicylate olsalazine, the antiepileptic phenytoin catechol, and the phlorotannins phlorofucofuroeckol and eckol. Our results suggest that the therapeutic and clinical effects of hit compounds may be partially attributed to the inhibition of the GTPCH1 enzyme. Notably, this study offers an understanding of the off-target effects of a number of compounds and advocates the potential role of aminosalicylates in the regulation of BH4 production in inflammatory disease states. It highlights an in silico drug repurposing approach to identify a potential means of safely targeting the BH4 biosynthetic pathway using established therapeutic agents.


Subject(s)
GTP Cyclohydrolase , Neuralgia , Humans , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/chemistry , Biopterins/pharmacology , Drug Repositioning , Molecular Docking Simulation , Neuralgia/metabolism , Nitric Oxide/metabolism
9.
Sci Transl Med ; 14(660): eabj1531, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36044597

ABSTRACT

Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents.


Subject(s)
Lung Neoplasms , Neuralgia , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Biopterins/analogs & derivatives , ErbB Receptors/genetics , ErbB Receptors/metabolism , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Neuralgia/drug therapy , Neuralgia/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
10.
Sci Rep ; 12(1): 14279, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995805

ABSTRACT

Dopa-responsive dystonia (DRD) is caused by an impaired dopamine biosynthesis due to a GTP-cyclohydrolase-1 (GCH1) deficiency, resulting in a combination of dystonia and parkinsonism. However, the effect of GCH1 mutations and levodopa treatment on motor control beyond simple movements, such as timing, action preparation and feedback processing, have not been investigated so far. In an active time estimation task with trial-by-trial feedback, participants indicated a target interval (1200 ms) by a motor response. We compared 12 patients tested (in fixed order) under their current levodopa medication ("ON") and after levodopa withdrawal ("OFF") to matched healthy controls (HC), measured twice to control for repetition effects. We assessed time estimation accuracy, trial-to-trial adjustment, as well as task- and feedback-related pupil-linked arousal responses. Patients showed comparable time estimation accuracy ON medication as HC but reduced performance OFF medication. Task-related pupil responses showed the reverse pattern. Trial-to-trial adjustments of response times were reduced in DRD, particularly OFF medication. Our results indicate differential alterations of time estimation accuracy and task-related arousal dynamics in DRD patients as a function of dopaminergic medication state. A medication-independent alteration of task repetition effects in DRD cannot be ruled out with certainty but is discussed as less likely.


Subject(s)
Dystonic Disorders , Levodopa , Arousal , Case-Control Studies , GTP Cyclohydrolase/genetics , Humans , Levodopa/therapeutic use
11.
Sci Rep ; 12(1): 6292, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428769

ABSTRACT

GTP-cyclohydrolase deficiency in dopa-responsive dystonia (DRD) patients impairs the biosynthesis of dopamine, but also of serotonin. The high prevalence of non-motor symptoms suggests involvement of the serotonergic pathway. Our study aimed to investigate the serotonergic system in vivo in the brain of`DRD patients and correlate this to (non-)motor symptoms. Dynamic [11C]DASB PET scans, a marker of serotonin transporter availability, were performed. Ten DRD, 14 cervical dystonia patients and 12 controls were included. Univariate- and network-analysis did not show differences in binding between DRD patients compared to controls. Sleep disturbances were correlated with binding in the dorsal raphe nucleus (all participants: rs = 0.45, p = 0.04; patients: rs = 0.64, p = 0.05) and participants with a psychiatric disorder had a lower binding in the hippocampus (all participants: p = 0.00; patients: p = 0.06). Post-hoc analysis with correction for psychiatric co-morbidity showed a significant difference in binding in the hippocampus between DRD patients and controls (p = 0.00). This suggests that psychiatric symptoms might mask the altered serotonergic metabolism in DRD patients, but definite conclusions are difficult as psychiatry is considered part of the phenotype. We hypothesize that an imbalance between different neurotransmitter systems is responsible for the non-motor symptoms, and further research investigating multiple neurotransmitters and psychiatry in DRD is necessary.


Subject(s)
Dystonic Disorders , GTP Cyclohydrolase , Dystonic Disorders/diagnostic imaging , Dystonic Disorders/genetics , GTP Cyclohydrolase/genetics , Guanosine Triphosphate , Humans , Levodopa , Positron-Emission Tomography
12.
Pediatrics ; 149(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-35083481

ABSTRACT

An exome sequencing result on a child with atypical gait was reported as negative; follow-up biochemical evaluation and reanalysis led to diagnosis of treatable DOPA-responsive dystonia.


Subject(s)
Dystonic Disorders/genetics , Dystonic Disorders/metabolism , Exome/physiology , GTP Cyclohydrolase/deficiency , GTP Cyclohydrolase/genetics , Carbidopa/therapeutic use , Child , Dopamine Agonists/therapeutic use , Drug Combinations , Dystonic Disorders/diagnosis , Humans , Levodopa/therapeutic use , Male , Exome Sequencing/methods
13.
J Biomol Struct Dyn ; 40(19): 9318-9331, 2022.
Article in English | MEDLINE | ID: mdl-34032179

ABSTRACT

GTP cyclohydrolase II (GCHII) is one of the rate limiting enzymes in riboflavin biosynthesis pathway and is shown to be a potential drug target for most of the pathogens. Previous biochemical and structural studies have identified the active site residues and elucidated the steps involved in the catalytic mechanism of GCHII. However, the last ∼20-25 C-terminal residues of GCHII remains unstructured in all the crystal structures determined to date and their role in the catalytic activity, if any, remains elusive. Therefore, to understand the role of these unstructured C-terminal residues, a series of C-terminal deletion mutants of GCHII from Helicobacter pylori (hGCHII) were generated and their catalytic activity was compared with its wild-type. Surprisingly, none of the C-terminal deletion mutants shows any enzymatic activity indicating that these are essential for GCHII function. To get additional insights for such loss of activity, homology models of full-length and deletion mutants of hGCHII in complex with GTP, Mg2+, and Zn2+ were generated and subjected to molecular dynamics simulation studies. The simulation studies show that a conserved histidine at 190th position from the unstructured C-terminal region of hGCHII interacts with α-phosphate of GTP. We propose that His-190 may play a role in the hydrolysis of pyrophosphate from GTP and in releasing the product, DARP. In summary, we demonstrate that the unstructured C-terminal residues of GCHII are important for its enzymatic activity and must be considered during rational drug designing. Communicated by Ramaswamy H. Sarma.


Subject(s)
GTP Cyclohydrolase , Helicobacter pylori , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/chemistry , GTP Cyclohydrolase/metabolism , Catalytic Domain , Helicobacter pylori/genetics , Guanosine Triphosphate
14.
Mov Disord ; 37(2): 237-252, 2022 02.
Article in English | MEDLINE | ID: mdl-34908184

ABSTRACT

BACKGROUND: Pathogenic variants in 5 genes (GCH1, TH, PTS, SPR, and QDPR), involved in dopamine/tetrahydrobiopterin biosynthesis or recycling, have been linked to Dopa-responsive dystonia (DRD). Diagnosis and treatment are often delayed due to high between- and within-group variability. OBJECTIVES: Comprehensively analyzed individual genotype, phenotype, treatment response, and biochemistry information. METHODS: 734 DRD patients and 151 asymptomatic GCH1 mutation carriers were included using an MDSGene systematic literature review and an automated classification approach to distinguish between different forms of monogenic DRDs. RESULTS: Whereas dystonia, L-Dopa responsiveness, early age at onset, and diurnal fluctuations were identified as red flags, parkinsonism without dystonia was rarely reported (11%) and combined with dystonia in only 18% of patients. While sex was equally distributed in autosomal recessive DRD, there was female predominance in autosomal dominant DYT/PARK-GCH1 patients accompanied by a lower median age at onset and more dystonia in females compared to males. Accordingly, the majority of asymptomatic heterozygous GCH1 mutation carriers (>8 years of age) were males. Multiple other subgroup-specific characteristics were identified, showing high accuracy in the automated classification approach: Seizures and microcephaly were mostly seen in DYT/PARK-PTS, autonomic symptoms appeared commonly in DYT/PARK-TH and DYT/PARK-PTS, and sleep disorders and oculogyric crises in DYT/PARK-SPR. Biochemically, homovanillic acid and 5-hydroxyindoleacetic acid in CSF were reduced in most DRDs, but neopterin and biopterin were increased only in DYT/PARK-PTS and DYT/PARK-SPR. Hyperphenylalaninemia was seen in DYT/PARK-PTS, DYT/PARK-QDPR, and rarely reported in autosomal recessive DYT/PARK-GCH1. CONCLUSIONS: Our indicators will help to specify diagnosis and accelerate start of treatment. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Dystonic Disorders , Dystonia/drug therapy , Dystonia/genetics , Dystonic Disorders/genetics , Female , GTP Cyclohydrolase/genetics , Genotype , Humans , Male , Phenotype
15.
Antioxid Redox Signal ; 37(1-3): 171-183, 2022 07.
Article in English | MEDLINE | ID: mdl-34806400

ABSTRACT

Significance: Tetrahydrobiopterin (BH4) is most well known as a required cofactor for enzymes regulating cellular redox homeostasis, aromatic amino acid metabolism, and neurotransmitter synthesis. Less well known are the effects dependent on the cofactor's availability, factors governing its synthesis and recycling, redox implications of the cofactor itself, and protein-protein interactions that underlie cell death. This review provides an understanding of the recent advances implicating BH4 in the mechanisms of cell death and suggestions of possible therapeutic interventions. Recent Advances: The levels of BH4 often reflect the sum of synthetic and recycling enzyme activities. Enhanced expression of GTP cyclohydrolase, the rate-limiting enzyme in biosynthesis, increases BH4, leading to improved cell function and survival. Pharmacologically increasing BH4 levels has similar beneficial effects, leading to enhanced production of neurotransmitters and nitric oxide or reducing oxidant levels. The GTP cyclohydrolase-BH4 pairing has been implicated in a type of cell death, ferroptosis. At the cellular level, BH4 counteracts anticancer therapies directed to enhance ferroptosis via glutathione peroxidase 4 (GPX4) activity inhibition. Critical Issues: Because of the multitude of intertwined mechanisms, a clear relationship between BH4 and cell death is not well understood yet. The possibility that the cofactor directly influences cell viability has not been excluded in previous studies when modulating BH4-producing enzymes. Future Directions: The importance of cellular BH4 variations and BH4 biosynthetic enzymes to cell function and viability makes it essential to better characterize temporal changes, cofactor activity, and the influence on redox status, which in turn would help develop novel therapies. Antioxid. Redox Signal. 37, 171-183.


Subject(s)
Biopterins , GTP Cyclohydrolase , Biopterins/analogs & derivatives , Biopterins/metabolism , GTP Cyclohydrolase/genetics , Nitric Oxide/metabolism , Oxidation-Reduction
16.
CNS Neurosci Ther ; 28(1): 36-45, 2022 01.
Article in English | MEDLINE | ID: mdl-34845843

ABSTRACT

AIMS: Neuropathic pain after spinal cord injury is one of the most difficult clinical problems after the loss of mobility, and pharmacological or neuromodulation therapy showed limited efficacy. In this study, we examine the possibility of pain modulation by a recombinant adeno-associated virus (rAAV) encoding small-hairpin RNA against GCH1 (rAAV-shGCH1) in a spinal cord injury model in which neuropathic pain was induced by a spinothalamic tract (STT) lesion. METHODS: Micro-electric lesioning was used to damage the left STT in rats (n = 32), and either rAAV-shGCH1 (n = 19) or rAAV control (n = 6) was injected into the dorsal horn of the rats at the same time. On postoperative days 3, 7, and 14, we evaluated neuropathic pain using a behavioral test and microglial activation by immunohistochemical staining. RESULTS: A pain modulation effect of shGCH1 was observed from postoperative days 3 to 14. The mechanical withdrawal threshold was 13.0 ± 0.95 in the shGCH1 group, 4.3 ± 1.37 in the control group, and 3.49 ± 0.85 in sham on postoperative day 3 (p < 0.0001) and continued to postoperative day 14 (shGCH1 vs. control: 11.4 ± 1.1 vs. 2.05 ± 0.60, p < 0.001 and shGCH1 vs. sham: 11.4 ± 1.1 vs. 1.43 ± 0.54, p < 0.001). Immunohistochemical staining of the spinal cord dorsal horn showed deactivation of microglia in the shGCH1 group without any change of delayed pattern of astrocyte activation as in STT model. CONCLUSIONS: Neuropathic pain after spinal cord injury can be modulated bilaterally by deactivating microglial activation after a unilateral injection of rAAV-shGCH1 into the dorsal horn of a STT lesion spinal cord pain model. This new attempt would be another therapeutic approach for NP after SCI, which once happens; there is no clear curative options still now.


Subject(s)
Dependovirus/genetics , GTP Cyclohydrolase/genetics , Microglia/physiology , Neuralgia/prevention & control , RNA, Small Interfering/metabolism , Spinal Cord Injuries/physiopathology , Spinothalamic Tracts/injuries , Animals , GTP Cyclohydrolase/metabolism , Hyperalgesia/pathology , Male , Neuralgia/physiopathology , Neuralgia/therapy , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn , Spinothalamic Tracts/physiopathology
17.
Parkinsonism Relat Disord ; 94: 67-78, 2022 01.
Article in English | MEDLINE | ID: mdl-34890878

ABSTRACT

INTRODUCTION: In 2009, we described a possible founder effect of autosomal dominant Segawa disease in Córdoba (Spain) due to mutation c.265C>T (p. Q89*) in the GCH1 gene. We present a retrospective multicentre study aimed at improving our knowledge of Segawa disease in Spain and providing a detailed phenotypic-genotypic description of patients. METHODS: Clinical-genetic information were obtained from standardized questionnaires that were completed by the neurologists attending children and/or adults from 16 Spanish hospitals. RESULTS: Eighty subjects belonging to 24 pedigrees had heterozygous mutations in GCH1. Seven genetic variants have been described only in our cohort of patients, 5 of which are novel mutations. Five families not previously described with p. Q89* were detected in Andalusia due to a possible founder effect. The median latency to diagnosis was 5 years (IQR 0-16). The most frequent signs and/or symptoms were lower limb dystonia (38/56, 67.8%, p = 0.008) and diurnal fluctuations (38/56, 67.8%, p = 0.008). Diurnal fluctuations were not present in the phenotypes other than dystonia. Fifty-three of 56 symptomatic patients were treated with a levodopa/decarboxylase inhibitor for (mean ± SD) 12.4 ± 8.12 years, with 81% at doses lower than 350 mg/day (≤5 mg/kg/d in children). Eleven of 53 (20%) patients had nonresponsive symptoms that affected daily life activities. Dyskinesias (4 subjects) were the most prominent adverse effects. CONCLUSION: This study identifies 5 novel mutations and supports the hypothesis of a founder effect of p. Q89* in Andalusia. New insights are provided for the phenotypes and long-term treatment responses, which may improve early recognition and therapeutic management.


Subject(s)
Dystonic Disorders , GTP Cyclohydrolase , Dystonic Disorders/genetics , GTP Cyclohydrolase/genetics , Humans , Levodopa/therapeutic use , Retrospective Studies , Spain , Treatment Outcome
19.
J Neurosci ; 42(4): 702-716, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34876467

ABSTRACT

The Parkinson's disease (PD) risk gene GTP cyclohydrolase 1 (GCH1) catalyzes the rate-limiting step in tetrahydrobiopterin (BH4) synthesis, an essential cofactor in the synthesis of monoaminergic neurotransmitters. To investigate the mechanisms by which GCH1 deficiency may contribute to PD, we generated a loss of function zebrafish gch1 mutant (gch1-/-), using CRISPR/Cas technology. gch1-/- zebrafish develop marked monoaminergic neurotransmitter deficiencies by 5 d postfertilization (dpf), movement deficits by 8 dpf and lethality by 12 dpf. Tyrosine hydroxylase (Th) protein levels were markedly reduced without loss of ascending dopaminergic (DAergic) neurons. L-DOPA treatment of gch1-/- larvae improved survival without ameliorating the motor phenotype. RNAseq of gch1-/- larval brain tissue identified highly upregulated transcripts involved in innate immune response. Subsequent experiments provided morphologic and functional evidence of microglial activation in gch1-/- The results of our study suggest that GCH1 deficiency may unmask early, subclinical parkinsonism and only indirectly contribute to neuronal cell death via immune-mediated mechanisms. Our work highlights the importance of functional validation for genome-wide association studies (GWAS) risk factors and further emphasizes the important role of inflammation in the pathogenesis of PD.SIGNIFICANCE STATEMENT Genome-wide association studies have now identified at least 90 genetic risk factors for sporadic Parkinson's disease (PD). Zebrafish are an ideal tool to determine the mechanistic role of genome-wide association studies (GWAS) risk genes in a vertebrate animal model. The discovery of GTP cyclohydrolase 1 (GCH1) as a genetic risk factor for PD was counterintuitive, GCH1 is the rate-limiting enzyme in the synthesis of dopamine (DA), mutations had previously been described in the non-neurodegenerative movement disorder dopa-responsive dystonia (DRD). Rather than causing DAergic cell death (as previously hypothesized by others), we now demonstrate that GCH1 impairs tyrosine hydroxylase (Th) homeostasis and activates innate immune mechanisms in the brain and provide evidence of microglial activation and phagocytic activity.


Subject(s)
Brain/enzymology , GTP Cyclohydrolase/deficiency , Homeostasis/physiology , Immunity, Innate/physiology , Tyrosine 3-Monooxygenase/metabolism , Animals , Animals, Genetically Modified , Brain/immunology , Dopaminergic Neurons/enzymology , Dopaminergic Neurons/immunology , GTP Cyclohydrolase/genetics , Genetic Predisposition to Disease/genetics , Parkinson Disease/enzymology , Parkinson Disease/genetics , Parkinson Disease/immunology , Sequence Analysis, RNA/methods , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...